

Journal of Coordination Chemistry

ISSN: 0095-8972 (Print) 1029-0389 (Online) Journal homepage: http://www.tandfonline.com/loi/gcoo20

Reactions of GeMe₂-bridged dicyclopentadienes with molybdenum carbonyl: formation of germylidyne trimolybdenum clusters

Bolin Zhu, Yuan Li, Tian Wang, Ruichen Sun, Jianqiao Sheng & Kai Liu

To cite this article: Bolin Zhu, Yuan Li, Tian Wang, Ruichen Sun, Jianqiao Sheng & Kai Liu (2015) Reactions of GeMe₂-bridged dicyclopentadienes with molybdenum carbonyl: formation of germylidyne trimolybdenum clusters, Journal of Coordination Chemistry, 68:7, 1167-1176, DOI: 10.1080/00958972.2015.1013948

To link to this article: http://dx.doi.org/10.1080/00958972.2015.1013948

Accepted author version posted online: 02 Feb 2015. Published online: 23 Feb 2015.

🖉 Submit your article to this journal 🗷

Article views: 21

View related articles 🗹

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gcoo20

Reactions of GeMe₂-bridged dicyclopentadienes with molybdenum carbonyl: formation of germylidyne trimolybdenum clusters

BOLIN ZHU*, YUAN LI, TIAN WANG, RUICHEN SUN, JIANQIAO SHENG and KAI LIU

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, College of Chemistry, Tianjin Normal University, Tianjin, PR China

(Received 26 October 2014; accepted 9 January 2015)

The GeMe₂-bridged dicyclopentadienes, including the doubly bridged dicyclopentadienes (C₅H₃R (SiMe₂))(C₅H₃R(GeMe₂)) (R=H (1), ^{*i*}Bu (5)) and the singly bridged one (C₅H₅)₂GeMe₂ (9), react with Mo(CO)₆ to produce the germylidyne trimolybdenum clusters $[(\eta^5-C_5H_3R)_2(SiMe_2)]$ $(\eta^5-C_5H_4R)[Mo(CO)_2]_3(\mu_3$ -GeMe) (4, 8) and $[(\eta^5-C_5H_5)Mo(CO)_2]_3(\mu_3$ -GeMe) (10), respectively.

^{*}Corresponding author. Email: hxxyzbl@mail.tjnu.edu.cn

^{© 2015} Taylor & Francis

B. Zhu et al.

In thermal reactions of the doubly bridged dicyclopentadienes $(C_5H_3R(SiMe_2))(C_5H_3R(GeMe_2))$ (R=H (1), 'Bu (5)) with Mo(CO)₆, the bridging GeMe₂ is cleaved to give the corresponding degermylated products $[(\eta^5-C_5H_3R)_2(SiMe_2)]Mo_2(CO)_6$ (3, *rac-7*), or both GeMe₂ and SiMe₂ are cleaved to afford the nonbridged products $[(\eta^5-C_5H_4R)Mo(CO)_3]_2$ (2, 6). The reactions also produce germylidyne trimolybdenum clusters $[(\eta^5-C_5H_3R)_2(SiMe_2)](\eta^5-C_5H_4R)[Mo(CO)_2]_3(\mu_3-GeMe)$ (4, *rac-/meso-7*) containing the Mo₃(μ_3 -GeMe) units. Similarly, reaction of the single GeMe₂-bridged dicyclopentadienes $(C_5H_5)_2GeMe_2$ (9) with Mo(CO)₆ also results in the degermylated 2, as well as the similar trimolybdenum cluster $[(\eta^5-C_5H_3M)_3(\mu_3-GeMe)$ (10). The molecular structures of 4 and *trans-5* were determined by X-ray diffraction.

Keywords: GeMe₂-bridged dicyclopentadienes; Mo(CO)₆; Germylidyne; Trimolybdenum clusters; X-ray diffraction

1. Introduction

The reactions of doubly bridged dicyclopentadienes $(C_5H_4(X))(C_5H_4(Y))$ (X, Y = CH₂, CMe₂, CH₂CH₂, SiMe₂, SiMe₂SiMe₂, GeMe₂, etc.) with transition metal carbonyls have attracted attention [1–7]. This research group reported a series of thermal reactions of the doubly bridged dicyclopentadienes $(C_5H_4(X))(C_5H_4(Y))$ (X, Y = CMe₂, SiMe₂, GeMe₂, or SnMe₂) with M(CO)₆ (M = Mo, W), Fe(CO)₅, and Ru₃(CO)₁₂ [8–16]. The bridging groups in the ligands could migrate to metal in the reaction to afford different types of products. For example, in the reaction of $(C_5H_4(SiMe_2))(C_5H_4(GeMe_2))$ (1) with Fe(CO)₅ (or W (CO)₆), the bridging group GeMe₂ generally migrates from the ligand to Fe (or W) atom to give $(SiMe_2)(\eta^5-C_5H_3)(\eta^5:\eta^1-C_5H_3)[(GeMe_2)M(CO)_n][M(CO)_n)]$ (M = Fe, n = 2; or M = W, n = 3) containing a Ge–Fe(W) bond; the bridging SiMe₂ does not migrate (Chart 1) [14]. However, as a continuous part of this program, the reaction of 1 with Mo(CO)₆ did not afford the similar product containing a Ge–Mo bond, but a germylidyne trimolybdenum cluster. Recently, several mononuclear germylidyne complexes have been reported [17–20]; however, to the best of our knowledge, the type of cluster described in this work is the first structurally characterized trinuclear germylidyne complex featuring a Mo₃(μ_3 -GeMe) unit.

2. Experimental

2.1. General considerations

Schlenk and vacuum line techniques were employed for all manipulations. All solvents were distilled from appropriate drying agents under nitrogen prior to use. ¹H NMR spectra were recorded on a Bruker AV400 instrument. IR spectra were recorded as KBr disks on a Nicolet 560 ESP FTIR spectrometer. Elemental analyses were performed on a Perkin–Elmer 240C analyzer. Compounds **1** and **9** were prepared by literature methods [21, 22].

Chart 1. Complexes $(SiMe_2)(\eta^5 - C_5H_3)(\eta^5 : \eta^1 - C_5H_3)[(GeMe_2)M(CO)_n][M(CO)_n)]$.

2.2. Reaction of $(C_5H_4(SiMe_2))(C_5H_4(GeMe_2))$ (1) with $Mo(CO)_6$

A solution of 0.29 g (1.0 mM) of **1** and 0.92 g (3.5 mM) of Mo(CO)₆ in 30 mL of xylene was refluxed for 20 h. After removal of solvent, the residue was chromatographed on an alumina column using petroleum ether/CH₂Cl₂ as eluent. The first band (red) afforded **2** (103 mg, 21% yield) as dark red crystals. The second band (red) gave **3** (98 mg, 18% yield) as red crystals. The third band (green) gave **4** (61 mg, 7% yield) as dark green crystals. All spectroscopic data for **2** and **3** are in agreement with literature data [23, 24].

For 4, Anal. Calcd for $C_{24}H_{22}GeMo_3O_6Si \cdot CH_2Cl_2$ (%): C, 34.12; H, 2.75. Found: C, 33.94; H, 2.69. ¹H NMR (400 MHz, CDCl_3) δ 5.36 (m, 2H, C_5H_4), 5.14 (m, 2H, C_5H_4), 5.10 (m, 2H, C_5H_4), 5.06 (s, 5H, C_5H_5), 4.72 (m, 2H, C_5H_4), 2.01 (s, 3H, Ge(CH_3)), 0.49 (s, 3H, Si(CH_3)), 0.36 (s, 3H, Si(CH_3)) ppm. IR (KBr, v_{CO} , cm⁻¹): 1944 (s), 1899 (br), 1855 (w), 1845 (w), 1833 (w), 1818 (w).

2.3. Syntheses of $(C_5H_3^tBu(SiMe_2))(C_5H_3^tBu(GeMe_2))$ (5)

To a solution of the dilithium salt of $(SiMe_2)(C_5H_4^{t}Bu)_2$, prepared from 2.1 g (7.0 mM) of $(CMe_2)(C_5H_4^{t}Bu)_2$ and 14.0 mM of an *n*-BuLi hexane solution in 50 mL of THF, was added slowly 1.2 g (6.8 mM) of GeMe_2Cl₂ in 20 mL of THF. After the mixture was stirred at room temperature for 16 h, the solvents were removed under reduced pressure. The residue was extracted with *n*-hexane. Upon concentration and cooling at -10 °C, 1.8 g (67%) of *trans*-5 was obtained as colorless crystals.

For *trans*-5, Anal. Calcd for $C_{22}H_{36}GeSi$ (%): C, 65.86; H, 9.04. Found: C, 65.75; H, 9.22. ¹H NMR (400 MHz, CDCl₃): δ 6.95 (m, 1H, C_5H_3), 6.88 (m, 1H, C_5H_3), 6.35 (m, 1H, C_5H_3), 6.33 (m, 1H, C_5H_3), 3.54 (m, 1H, C_5H_3), 3.33 (m, 1H, C_5H_3), 1.24 (s, 3H, $C(CH_3)_3$), 1.23 (s, 3H, $C(CH_3)_3$), 0.68 (s, 3H, CH_3), 0.51 (s, 3H, CH_3), -0.35 (s, 3H, CH_3), -0.48 (s, 3H, CH_3) ppm.

2.4. Reaction of trans-5 with Mo(CO)₆

A solution of 0.48 g (1.2 mM) of *trans*-**5** and 0.80 g (3.0 mM) of $Mo(CO)_6$ in 30 mL of xylene was refluxed for 20 h. After removal of the solvent, the residue was chromatographed on an alumina column using petroleum ether/CH₂Cl₂ as eluent. The first band (red) afforded **6** (123 mg, 17% yield) as dark red crystals. The second band (red) gave *rac*-**7** (110 mg, 14% yield) as dark red crystals. The third band (green) afforded *meso*-**8** (58 mg, 5% yield) as dark green crystals. The last band (green) gave *rac*-**8** (46 mg, 4% yield) as dark green crystals. All spectroscopic data for **6** are in agreement with literature data [25].

For *rac*-7, Anal. Calcd for $C_{26}H_{30}Mo_2O_6Si$ (%): C, 47.42; H, 4.59. Found: C, 47.55; H, 4.36. ¹H NMR (400 MHz, CDCl₃): δ 5.52 (m, 2H, C_5H_3), 5.47 (m, 2H, C_5H_3), 4.82 (m, 2H, C_5H_3), 1.25 (s, 18H, C(CH₃)₃), 0.41 (m, 6H, Si(CH₃)) ppm. IR (KBr, v_{CO} , cm⁻¹): 2005 (s), 1948 (s), 1898 (s), 1870 (s).

For *meso*-**8**, Anal. Calcd for $C_{36}H_{46}GeMo_3O_6Si$ (%): C, 44.88; H, 4.81. Found: C, 44.75; H, 4.99. ¹H NMR (400 MHz, CDCl₃): δ 5.19 (m, 1H, Cp–*H*), 5.01 (m, 4H, Cp–*H*), 4.86 (m, 1H, Cp–*H*), 4.72 (m, 1H, Cp–*H*), 4.59 (m, 1H, Cp–*H*), 4.28 (m, 2H, Cp–*H*), 1.93 (s, 3H, Ge (CH₃)), 1.27 (s, 9H, C(CH₃)₃), 1.25 (s, 9H, C(CH₃)₃), 1.24 (s, 9H, C(CH₃)₃), 0.57 (s, 3H, Si (CH₃)), 0.34 (s, 3H, Si(CH₃)) ppm. IR (KBr, v_{CO}, cm⁻¹): 2010 (s), 1954 (s), 1910 (s).

For *rac*-**8**, Anal. Calcd for $C_{36}H_{46}GeMo_3O_6Si$ (%): C, 44.88; H, 4.81. Found: C, 44.82; H, 5.04. ¹H NMR (400 MHz, CDCl₃): δ 5.00 (m, 2H, Cp–*H*), 4.95 (m, 2H, Cp–*H*), 4.92

(m, 2H, Cp–*H*), 4.84 (m, 2H, Cp–*H*), 4.61 (m, 2H, Cp–*H*), 1.97 (s, 3H, Ge(CH₃)), 1.27 (s, 9H, C(CH₃)), 1.25 (s, 18H, C(CH₃)₃), 0.44 (s, 3H, Si(CH₃)), 0.28 (s, 3H, Si(CH₃)) ppm. IR (KBr, v_{CO} , cm⁻¹): 2026 (s), 1956 (s), 1918 (s).

2.5. Reaction of $(C_5H_5)_2GeMe_2$ (9) with $Mo(CO)_6$

A solution of 0.23 g (1.0 mM) of **9** and 0.70 g (2.7 mM) of Mo(CO)₆ in 20 mL of xylene was refluxed for 20 h. After removal of the solvent, the residue was chromatographed on an alumina column using petroleum ether/CH₂Cl₂ as eluent. The first band (red) gave **2** (157 mg, 32% yield) as dark red crystals. The second band (green) gave **10** (81 mg, 11% yield) as dark green solid.

For **10**, Anal. Calcd for $C_{22}H_{18}$ GeMo₃O₆ (%): C, 35.76; H, 2.46. Found: C, 34.63; H, 2.55. ¹H NMR (400 MHz, CDCl₃): δ 5.04 (s, 15H, C₅H₅), 2.04 (s, 3H, Ge(CH₃)) ppm. IR (KBr, v_{CO}, cm⁻¹): 2026 (s), 1957 (w), 1908 (br), 1830 (w).

2.6. X-ray crystallographic studies

Single crystals of **4** suitable for X-ray diffraction were obtained by crystallization from *n*-hexane/CH₂Cl₂ (1 : 1), and the single crystal of *trans*-**5** was obtained by crystallization from pure *n*-hexane. Data collection was performed on a Bruker SMART 1000 X-ray diffractometer using graphite-monochromated Mo K α radiation (ω -2 θ scans, λ = 0.71073 Å). Semiempirical absorption corrections were applied for all complexes. The structures were solved by direct methods and refined by full-matrix least-squares. All calculations were done using SHELXTL-97. The crystal data and summary of X-ray data collection are presented in table 1.

Table 1.	Crystal data	and summary	of X-ray	data collection	for 4 and tra	ıns-5
----------	--------------	-------------	----------	-----------------	---------------	-------

Complex	4·CH ₂ Cl ₂	trans-5	
Empirical formula	C25H24Cl2GeM03O6Si	C22H36GeSi	
Molecular weight	879.84	401.19	
<i>T</i> (K)	173(2)	173(2)	
Crystal system	Orthorhombic	Triclinic	
Space group	Fdd2	P-1	
Unit cell dimensions (Å, °)			
a	27.903(3)	10.072(3)	
b	42.503(4)	18.328(6)	
С	9.5514(9)	12.362(4)	
α	90	90	
β	90	107.629(5)	
γ	90	90	
Volume (Å ³)	11327.5(19)	2174.9(12)	
Ζ	16	4	
Calculated density $(g \text{ cm}^{-3})$	2.064	1.225	
Absorption coefficient (mm^{-1})	2.619	1.465	
F(000)	6848	856	
Crystal size (mm)	$0.18 \times 0.17 \times 0.16$	$0.18 \times 0.17 \times 0.16$	
Max. 2θ (deg)	50.00	50.02	
Reflections collected	14,260	10,473	
Independent reflections/R _{int}	4733/0.0529	3802/0.0348	
Parameters	346	241	
Goodness-of-fit on F^2	1.049	1.026	
$R_1, WR_2 [I > 2\sigma(I)]$	0.0354, 0.0803	0.0333, 0.0723	
R_1 , w R_2 (all data)	0.0388, 0.0823	0.0448, 0.0772	
Largest diff peak and hole (e $Å^{-3}$)	0.588 and -0.530	0.319 and -0.408	

Scheme 1. Reaction of (C5H4(SiMe2))(C5H4(GeMe2)) (1) with Mo(CO)6.

3. Results and discussion

3.1. Reaction of $(C_5H_4(SiMe_2))(C_5H_4(GeMe_2))$ (1) with $Mo(CO)_6$

The doubly bridged dicyclopentadiene 1 reacts with Mo(CO)₆ in refluxing xylene to afford two red solids 2 and 3, and a dark green crystalline solid 4 (scheme 1). Through comparing the spectroscopic data of 2 and 3 with those of known complexes, 3 is the singly bridged dicyclopentadienyl bimetallic Mo complex $[(\eta^5-C_5H_4)_2(SiMe_2)]Mo_2(CO)_6$ [23], **2** is the nonbridged dicyclopentadienyl dinuclear Mo complex $[(\eta^5-C_5H_5)Mo(CO)_3]_2$ [24]. Formation of 2 and 3 indicates that both the bridging $GeMe_2$ and $SiMe_2$ groups in the ligand could be cleaved in the reaction of 1 with $Mo(CO)_6$. For 4, the ¹H NMR spectrum shows four multiplets at δ 5.36, 5.14, 5.10, and 4.72 for the protons in two bridged cyclopentadienyl rings, one singlet at δ 5.06 for the protons in the third cyclopentadienyl ring, two singlets at δ 0.49 and 0.36 for the different CH₃ protons in SiMe₂, and one singlet at $\delta 2.01$ which corresponds to the Ge–Me group. Comparing with the signal (1.35 ppm) for GeMe₂ methyl on $[(\eta^5-C_5H_5)Mo(CO)_3]_2GeMe_2$ [26], the signal of Ge–Me group on 4 is significantly shifted to low field, indicating the electron withdrawing ability of $[(\eta^5-C_5H_5)Mo(CO)_3]$. The IR spectrum exhibits two distinct v(CO) bands at 1944 and 1899 cm⁻¹ and four weak bands at 1855–1818 cm⁻¹. A single-crystal X-ray structural determination (figure 1, table 1) of 4 shows that three Mo and one Ge are bonded to form a tetrahedron, in which two Mo ions coordinate to the SiMe₂-bridged dicyclopentadienyl, the third Mo coordinates to a simple cyclopentadienyl ring, and Ge is bonded to a methyl. Each Mo carries two terminal carbonyl ligands and three Mo ions are bridged by a GeMe unit in μ_3 -mode. The mean distance of three Mo–Mo bonds is 3.1502 Å, which compares very well with the data (3.1406 Å) for the singly bridged dicyclopentadienyl dinuclear Mo complex $[(\eta^5-C_5H_4)_2(CH_2)]Mo_2(CO)_6$ [27], but slightly longer than those reported for trinuclear μ_3 -methylidyne analogs (μ_3 -CR)[(η^5 -C₅H₄R')Mo(CO)₂]₃ (R, R'=H, Me) (2.985–3.062 Å) [28]. The mean distance of three Mo-Ge bonds is 2.521 Å, shorter than normal Mo–Ge single bond distances in $(\eta^5-C_5H_5)(CO)_2Mo(GePh_3){C(OEt)Ph}$ (2.658(2) Å) $[29], (\eta^5-C_5H_5)(\eta^3-C_6H_{11})(NO)MoGePh_3 (2.604(2) Å) [30], [(\eta^5-C_5H_5)Mo(CO)_3]_2GeCl_2$ (2.6668(6) and 2.6536(7) Å) [31], and $(CMe_2)(\eta^5-C_5H_3)(\eta^5,\eta^1-C_5H_3)[(GeMe_2)Mo(CO)_3]$ [Mo(CO)₃] (2.667(1) Å) [16], as well as the calculated Ge–Mo bond distance of 2.695 Å for $[(\eta^5-C_5H_5)M_0(CO)_3(GeMe)]$ [18]. The shortening seen in 4 may arise from the tetrahedral Mo₃(μ_3 -GeMe) unit. The formation of germylidyne cluster 4 involves cleavage of a Ge-Me bond. While there are some thermal reactions involving a cleavage of a Ge-Cp bond and formation of 2 and 3 reported previously [10, 12–16], there are no examples of $Mo_3(\mu_3$ -GeMe) cluster formation.

Figure 1. Thermal ellipsoid drawing of $[(\eta^5-C_5H_4)_2(SiMe_2)](\eta^5-C_5H_5)[Mo(CO)_2]_3(\mu_3-GeMe)$ (4) showing the labeling scheme and 30% probability level. Hydrogens are omitted for clarity. Selected bond lengths (Å) and angles (°) are: Mo(1)–Mo(2) 3.1444(8), Mo(2)–Mo(3) 3.1334(8), Mo(1)–Mo(3) 3.1728(8), Mo(1)–Ge(1) 2.5231(8), Mo(2)–Ge(1) 2.514(1), Mo(3)–Ge(1) 2.5259(8), Ge(1)–C(25) 1.954(7), Mo(1)–Cp(centroid) 2.013, Mo(2)–Cp(centroid) 2.027, Mo(3)–Cp(centroid) 2.026, Mo(1)–C(18) 1.961(8), Mo(1)–C(19) 1.973(7), C(18)–O(1) 1.162(9), C (19)–O(2) 1.159(8), $\angle Mo(1)$ –Mo(2)–Mo(3) 60.72(2), $\angle Mo(2)$ –Mo(1)–Mo(3) 59.47(2), $\angle Mo(1)$ –Ge(1)–Mo(2) 77.26(3), $\angle Mo(1)$ –Ge(1)–C(25) 130.2(2), C(1)–Si(1)–C(8) 107.1(3), $\angle Cp(centroid)$ –Mo(1)–Mo(2)–Cp(centroid) 18.2, $\angle Cp$ –Cp 120.3.

Scheme 2. Syntheses of 5.

3.2. Syntheses of $(C_5H_3^tBu(SiMe_2))(C_5H_3^tBu(GeMe_2))$ (5)

To develop a wider generality of formation of clusters of type **4**, the *tert*-butyl substituted doubly bridged **5** was prepared according to a similar method synthesizing its analog $(C_5H_3'Bu(CMe_2))(C_5H_3'Bu(SiMe_2))$ [15]. Reaction of the dilithium salts of the SiMe₂-bridged dicyclopentadiene, SiMe₂($C_5H_3'Bu^-Li^+$)₂, with 1 equiv of GeMe₂Cl₂ in THF at room temperature for 16 h yields **5** (scheme 2). In theory, **5** should exist as a mixture of

Figure 2. Thermal ellipsoid drawing of $(C_5H_3'Bu(SiMe_2))(C_5H_3'Bu(GeMe_2))$ (*trans*-5) showing the labeling scheme and 30% probability level. Hydrogens are partly omitted for clarity. Selected bond lengths (Å) and angles (°) are: C(1)–C(2) 1.344(3), C(2)–C(3) 1.451(3), C(3)–C(4) 1.344(3), C(4)–C(5) 1.469(3), C(1)–C(5) 1.494(3), Si (1A)–C(5) 1.953(6), $\angle C(1)$ –Ge(1)–C(5A) 103.1(1), $\angle Si(1A)$ –C(5)–C(1) 104.4(2), $\angle C(5)$ –C(1)–Ge(1) 124.4(2), $\angle C(10)$ –Ge(1)–C(11) 112.0(1).

trans and *cis* isomers, and the interconversion may occur between them by 1,5-sigma tropic shift [32]. However, only the *trans* isomer (*trans*-5) was isolated by crystallization from *n*-hexane in 67% yield in the form of colorless crystals, which may be attributed to the lower solubility or higher yield of *trans*-5. We have not isolated pure *cis*-5, so in the reaction mentioned below, we used a single isomer *trans*-5 as the starting material.

The molecular structure of *trans*-**5** is presented in figure 2. It is different with C_s symmetry from some doubly bridged analogs (($C_5H_3'Bu(CMe_2)$)($C_5H_3'Bu(SnMe_2)$) [9] and ($C_5H_3'Bu(SiMe_2)$)($C_5H_3'Bu(SnMe_2)$) [33]), which possess a symmetry plane in their respective molecular structures. *Trans*-**5** does not show the preference that other doubly bridged cyclopentadienes of this type show for sp³ geometry at the more electropositive element since the difference in this case in going from Si to Ge is smaller than in going from C or Si to Sn where the preference is shown. In *trans*-**5**, H(5) and H(5A) on the bridgehead carbons are *trans* to each other. The six-membered ring C(1)–C(5)–Si(1A)–C(1A)–C(5A)–Ge (1) constituting the molecular framework adopts a stable chair conformation. The bridging groups (SiMe₂ and GeMe₂) are connected to one sp²-hybridized carbon and one sp³-hybridized carbon, reflected by C–C bond distances on the two cyclopentadiene rings. Two *tert*-butyl groups occupy the position at each cyclopentadienyl ring that is farthest away from the bridging SiMe₂ and GeMe₂ groups.

3.3. Reaction of 5 with Mo(CO)₆

Like its parent **1**, **5** reacts with Mo(CO)₆ in refluxing xylene to afford three products (**6–8**) (scheme 3). The only difference is that **7** and **8** exist as a mixture of *rac* and *meso* isomers arising from the introduction of two *t*-butyl groups on **5**. Complexes *rac* and *meso-***8** were separated by column chromatography and isolated as pure dark green solids. For *rac-***8**, its ¹H NMR spectrum shows five groups of peaks at δ 5.00, 4.95, 4.92, 4.84, and 4.61 for the 10 protons in three cyclopentadienyl rings, one singlet at δ 1.25 for the protons in two ^{*t*}Bu groups on the bridged ligand (η^5 -C₅H₃^{*t*}Bu)₂SiMe₂]₂, and one singlet at δ 1.27 for the protons in ^{*t*}Bu group on (η^5 -C₅H₄^{*t*}Bu), which is consistent with its *rac* configuration. For *meso-***8**, its ¹H NMR spectrum shows six unequal peaks at δ 5.19, 5.01, 4.86, 4.72, 4.59, and 4.28 for all protons in three cyclopentadienyl rings, two singlets at δ 1.25 and 1.24 for the protons in two ^{*t*}Bu groups on the bridged ligand (η^5 -C₅H₃^{*t*}Bu)₂SiMe₂]₂, which indicates

Scheme 3. Reaction of $(C_5H_3^{t}Bu(SiMe_2))(C_5H_3^{t}Bu(GeMe_2))$ (5) with Mo(CO)₆.

its *meso* configuration. However, *rac* and *meso* isomers of 7 could not be separated by normal column chromatography owing to their almost equal R_f values. Only pure *rac*-7 was isolated by crystallization from *n*-hexane/CH₂Cl₂ (1 : 1).

3.4. Reaction of $(C_5H_5)_2GeMe_2$ (9) with $Mo(CO)_6$

Based on the two reactions described above, the germylidyne trimolybdenum clusters (4 and 8) can be synthesized from reactions of (SiMe₂)(GeMe₂) doubly bridged dicyclopentadienes (1 and 5) with $Mo(CO)_6$. In order to find out whether the bridging SiMe₂ group in the doubly bridged ligand is necessary for formation of the cluster, the reaction of the single GeMe₂-bridged dicyclopentadienes (C_5H_5)₂GeMe₂ (9) with Mo(CO)₆ was studied. Reaction of 9 with Mo(CO)₆ in refluxing xylene gives red 2 and dark green 10 (scheme 4). For 10, the ¹H NMR spectrum shows one singlet at δ 5.04 for protons in the cyclopentadienyl rings and one singlet at $\delta 2.04$ for the CH₃ protons in GeMe, which compares very well with the data (2.01 ppm) in 4. The IR spectrum exhibits several v(CO) bands at 2026–1830 cm⁻¹. All these spectroscopic data support that 10 is the germylidyne trimolybdenum cluster $[(\eta^5-C_5H_5)Mo(CO)_2]_3(\mu_3-GeMe)$ similar to 4 and 8. It is apparent that the SiMe₂ bridge in the doubly bridged ligand is not necessary for formation of the cluster. Generally, the GeMe₂-bridged dicyclopentadienes (including the doubly and singly bridged dicyclopentadienes) would react with $Mo(CO)_6$ in refluxing xylene to produce the germylidyne trimolybdenum clusters. This type of cluster is only generated with Mo(CO)₆. Based on our previous report, no similar cluster is produced from reactions of GeMe₂-bridged dicyclopentadienes with other transition metal carbonyls, like W(CO)₆ or Fe(CO)₅ [14]. In a series of reactions of doubly bridged dicyclopentadienes with transition metal carbonyls, the bridging group in the ligands generally does ring-to-metal migration. For example, in the reaction of (C₅H₄(SiMe₂))(C₅H₄(SnMe₂)) with Mo(CO)₆, the SnMe₂ bridge migrates from the ring to metal to give $SiMe_2[(\eta^5-C_5H_4)Mo(CO)_3]_2SnMe_2$, which contains a Mo–Sn–Mo unit [10].

Scheme 4. Reaction of (C₅H₅)₂GeMe₂ (9) with Mo(CO)₆.

We consider that clusters like **10** could be generated from further reaction of the GeMe₂migrated compound $[(\eta^5-C_5H_5)Mo(CO)_3]_2$ GeMe₂ with the degermylated product $[(\eta^5-C_5H_5)Mo(CO)_3]_2$, or the active species $(\eta^5-C_5H_5)Mo(CO)_3$, because $[(\eta^5-C_5H_5)Mo(CO)_3]_2$ GeMe₂ is thermally unstable, decomposing at room temperature to the corresponding metal carbonyl dimer $[(\eta^5-C_5H_5)Mo(CO)_3]_2$ and some unknown products [26].

4. Conclusion

The GeMe₂-bridged dicyclopentadienes, including the doubly bridged dicyclopentadienes $(C_5H_3R(SiMe_2))(C_5H_3R(GeMe_2))$ (R=H (1), ^{*t*}Bu (5)) and the singly bridged one $(C_5H_5)_2GeMe_2$ (9), react with Mo(CO)₆ to produce germylidyne trimolybdenum clusters $[(\eta^5-C_5H_3R)_2(SiMe_2)](\eta^5-C_5H_4R)[Mo(CO)_2]_3(\mu_3$ -GeMe) (4, 8) and $[(\eta^5-C_5H_5)Mo(CO)_2]_3(\mu_3$ -GeMe) (10), respectively. This class of cluster is only generated when the reactant, transition metal carbonyl is Mo(CO)₆. A plausible pathway for formation of the germylidyne trimolybdenum clusters is discussed, although the exact mechanism still remains unclear under our current experimental conditions.

Supplementary material

CCDC 1017415 and 1017416 contain the supplementary crystallographic data for 4 and *trans*-5. These data can be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44 1223336 033; E-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Funding

This work was financially supported by the National Natural Science Foundation of China [grant number 21002069]; the Natural Science Foundation of Tianjin [grant number 14JCYBJC20300], [grant number 13JCQNJC06000]; and the Program for Innovative Research Team in University of Tianjin [grant number TD12-5038].

References

- P.S. Fier, R.R. Reinig, J. King, C. Dickerson, R.M. Chin, M. Doucouré, W. Brennessel. Organometallics, 31, 261 (2012), and references therein.
- [2] E.Y.-J. Min, J.A. Byers, J.E. Bercaw. Organometallics, 27, 2179 (2008), and references therein.
- [3] X.-F. Hou, P.-C. Zhang, S. Liu, H. Wang, Y.-J. Lin, G.-X. Jin. J. Organomet. Chem., 693, 1462 (2008).
- [4] M.V. Ovchinnikov, X. Wang, A.J. Schultz, I.A. Guzei, R.J. Angelici. *Organometallics*, **21**, 3292 (2002), and references therein.
- [5] F. Amor, E. de Jesús, A.I. Pérez, P. Royo, A.V. de Miguel. Organometallics, 15, 365 (1996).
- [6] J.Y. Corey, J.L. Huhmann, N.P. Rath. Inorg. Chem., 34, 3203 (1995), and references therein.
- [7] U. Siemeling, P. Jutzi, B. Neumann, H.G. Stammler, M.B. Hursthouse. Organometallics, 11, 1328 (1992).
- [8] B. Zhu, Y. Li. Polyhedron, 69, 244 (2014).
- [9] B. Zhu, X. Hao. J. Organomet. Chem., 735, 52 (2013).
- [10] B.-L. Zhu, Y. Li, Y.-F. Chen, W. Shi. Polyhedron, 38, 251 (2012).
- [11] B. Zhu, Y. Chen, W. Shi, Y. Li, X. Hao. Organometallics, 31, 4046 (2012).

B. Zhu et al.

- [12] B. Zhu, Y. Li, Y. Chen, W. Shi. Organometallics, 31, 3035 (2012).
- [13] B. Zhu, S. Xu, X. Zhou, B. Wang. J. Organomet. Chem., 708-709, 88 (2012).
- [14] B. Zhu, Y. Li. Inorg. Chim. Acta, 387, 431 (2012).
- [15] B. Wang, B. Zhu, J. Zhang, S. Xu, X. Zhou, L. Weng. Organometallics, 22, 5543 (2003).
- [16] B. Wang, B. Zhu, S. Xu, X. Zhou. Organometallics, 22, 4842 (2003).
- [17] A.C. Filippou, K.W. Stumpf, O. Chernov, G. Schnakenburg. Organometallics, 31, 748 (2012).
- [18] K.K. Pandey, M. Lein, G. Frenking. J. Am. Chem. Soc., 125, 1660 (2003).
- [19] L. Pu, B. Twamley, S.T. Haubrich, M.M. Olmstead, B.V. Mork, R.S. Simons, P.P. Power. J. Am. Chem. Soc., 122, 650 (2000).
- [20] R.S. Simons, P.P. Power. J. Am. Chem. Soc., 118, 11966 (1996).
- [21] S. Xu, J. Zhang, B. Zhu, B. Wang, X. Zhou, L. Weng. J. Organomet. Chem., 626, 186 (2001).
- [22] T.J. Barton, G.T. Burns, E.W. Arnold, J. Clardy. Tetrahedron Lett., 22, 7 (1982).
- [23] J. Heck, K.-A. Kriebisch, H. Mellinghoff. Chem. Ber., 121, 1753 (1988).
- [24] D.S. Ginley, C.R. Bock, M.S. Wrighton. Inorg. Chim. Acta, 23, 85 (1977).
- [25] D. Chen, J. Guo, S. Xu, H. Song, B. Wang. Organometallics, 26, 4212 (2007).
- [26] R.C. Job, M.D. Curtis. Inorg. Chem., 12, 2514 (1973).
- [27] R. Fierro, T.E. Bitterwolf, A.L. Rheingold, G.P.A. Yap, L.M. Liable-Sands. J. Organomet. Chem., 524, 19 (1996).
- [28] M. Akita, K. Noda, Y. Takahashi, Y. Moro-oka. Organometallics, 14, 5209 (1995).
- [29] L.Y.Y. Chan, W.K. Dean, W.A.G. Graham. Inorg. Chem., 16, 1067 (1977).
- [30] F. Carre, E. Colomer, R.J.P. Corriu, A. Vioux. Organometallics, 3, 970 (1984).
- [31] A.C. Filippou, J.G. Winter, G. Kociok-köhn, I. Hinz. J. Chem. Soc., Dalton Trans., 2029 (1998).
- [32] I.E.Nifant'ev, V.L. Yarnykh, M.V. Borzov, B.A. Mazurchik, V.I. Mstislavskii, V.A. Roznyatovskii, Y.A. Ustynyuk. Organometallics, 10, 3739 (1991).
- [33] M. Hüttenhofer, M.-H. Prosenc, U. Rief, F. Schaper, H.-H. Brintzinger. Organometallics, 15, 4816 (1996).